specifying one or more of the items of the list of items. Hence, the select bar is one type of visual indicator. Next, a decision 1104 determines whether a rotational movement input has been received. When the decision 1104 determines that a rotational movement input has not yet been received, then a decision 1106 determines whether another input has been received. Here, the inputs are provided by a user of the computing device performing or associated with the user input processing 1100. When the decision 1106 determines that another input has been received, then other processing is performed 1108 to perform any operations or actions caused by the other input. Following the operation 1108, the user input processing 1100 is complete and ends. On the other hand, when the decision 1106 determines that no other input has been received, then the user input processing 1100 returns to repeat the decision 1104.

[0089] Once the decision 1104 determines that a rotational movement input has been received, then the rotational movement is converted 1110 to a linear movement. Then, a next portion of the list of items (and placement of the select bar over one of the items) is determined 1112. Thereafter, the next portion of the list of items is displayed 1114. The linear movement operates to move the select bar (or other visual identifier) within the list. In other words, the select bar is scrolled upwards or downwards (in an accelerated or unaccelerated manner) by the user in accordance with the linear motion. As the scrolling occurs, the portion of the list being displayed changes. Following the operation 1114, the user input processing 1100 is complete and ends. However, if desired, the user input processing 1100 can continue following operation 1114 by returning to the decision 1104 such that subsequent rotational movement inputs can be processed to view other portions of the list items in a similar manner.

[0090] FIG. 12 is a block diagram of a rotary input display system 1200 in accordance with one embodiment of the invention. By way of example, the rotary input display system 1200 can be performed by a computing device, such as the computer system 650 illustrated in FIG. 7A or the media player 700 illustrated in FIG. 7B. The rotary input display system 1200 utilizes a rotational input device 1202 and a display screen 1204. The rotational input device 1202 is configured to transform a rotational motion 1206 by a user input action (e.g., a swirling or whirling motion) into translational or linear motion 1208 on the display screen 1204. In one embodiment, the rotational input device 1402 is arranged to continuously determine either the angular position of the rotational input device 1202 or the angular position of an object relative to a planar surface 1209 of the rotational input device 1202. This allows a user to linearly scroll through a media list 1211 on the display screen 1204 by inducing the rotational motion 1206 with respect to the rotational input device 1202.

[0091] The rotary input display system 1200 also includes a control assembly 1212 that is coupled to the rotational input device 1202. The control assembly 1212 is configured to acquire the position signals from the sensors and to supply the acquired signals to a processor 1214 of the system. By way of example, the control assembly 1212 may include an application-specific integrated circuit (ASIC) that is configured to monitor the signals from the sensors to compute the angular location and direction (and optionally speed and

acceleration) from the monitored signals and to report this information to the processor 1214.

[0092] The processor 1214 is coupled between the control assembly 1212 and the display screen 1204. The processor 1214 is configured to control display of information on the display screen 1204. In one sequence, the processor 1214 receives angular motion information from the control assembly 1212 and then determines the next items of the media list 1211 that are to be presented on the display screen 1204. In making this determination, the processor 1214 can take into consideration the length of the media list 1211. Typically, the processor 1214 will determine the rate of movement such that the transitioning to different items in the media list 1211 can be performed faster or in an accelerated manner when moved at non-slow speeds or proportional with greater speeds. In effect, to the user, rapid rotational motion causes faster transitioning through the list of media items 1211. Alternatively, the control assembly 1212 and processor 1214 may be combined in some embodiments.

[0093] Although not shown, the processor 1214 can also control a buzzer to provide audio feedback to a user. The audio feedback can, for example, be a clicking sound produced by a buzzer 1216. In one embodiment, the buzzer 1216 is a piezoelectric buzzer. As the rate of transitioning through the list of media items increases, the frequency of the clicking sounds increases. Alternatively, when the rate of transitioning slows, the frequency of the clicking sounds correspondingly slows. Hence, the clicking sounds provide audio feedback to the user as to the rate in which the media items within the list of media items are being traversed.

[0094] The various aspects, features or embodiments of the invention described above can be used alone or in various combinations. The invention is preferably implemented by a combination of hardware and software, but can also be implemented in hardware or software. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

[0095] The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. It should be noted that this is not an exhaustive list and there may be other advantages which are not described herein. One advantage of the invention is that a user is able to traverse through a displayed list of items using a rotational user input action. Another advantage of the invention is that a user is able to easily and rapidly traverse a lengthy list of items. Still another advantage of the invention is the rate of traversal of the list of media items can be dependent on the rate of rotation of a dial (or navigation wheel). Yet still another advantage of the invention is that audible sounds are produced to provide feedback to users of their rate of traversal of the list of media items.

[0096] The many features and advantages of the present invention are apparent from the written description, and